
Keynote:	[title	redacted]
(0:08	-	0:45)

This	is	a	proposed	redesign	of	the	consensus	layer	that	incorporates	all	of	the	latest	and
greatest	ideas	from	the	research	roadmap,	and	the	goal	is	to	try	and	transition	in	a	safe
and	fast	manner	from	the	beacon	chain	that	we	have	today	to	this	beam	chain	which	is
much,	 much	 closer	 to	 the	 final	 design	 of	 Ethereum.	 Now,	 before	 I	 share	 more
information,	 I	 have	 two	 disclosures,	 disclaimers.	 Disclaimer	 number	 one	 is	 that	 this	 is
just	a	proposal.

(0:45	-	8:08)

This	 is	my	proposal,	 and	 the	proposal	will	 only	go	 forward	 if	 there	 is	 rough	consensus
with	it	going	forward.	And	the	second	disclaimer	is	that	there	is	no	new	token,	there	is	no
new	network,	and	we're	reusing	the	same	ticker,	and	Vitalik	was	very,	very	clear	as	to
what	 this	 ticker	 is.	Now,	 in	 the	 rest	of	 this	 talk,	 I	want	 to	 take	what	may	sound	 like	a
totally	crazy	idea	and	convince	you	that	actually	it's	maybe	not	so	crazy,	that	it	might	be
a	reasonable	proposal	to	put	on	the	table	to	completely	redesign	the	consensus	layer.

And	 first,	 I	 want	 to	 tell	 you	 a	 little	 bit	more	 about	 the	 beam	 chain	 and	 what	 the	 big
picture	vision	is	all	about.	So	the	scope	of	the	beam	chain	is	specifically	the	consensus
layer,	and	I'm	excluding	the	data	layer	with	the	blobs	and	the	execution	layer	with	the
EVM.	 And	 the	 reason	 is	 that	 the	 blobs	 and	 the	 EVM	 are	 directly	 consumed	 by
applications,	and	there	is	a	need	to	be	forward	compatible.

And	so	the	opportunity	to	modify	these	two	layers	is	rather	limited.	On	the	other	hand,
the	 consensus	 layer	 is	 not	 directly	 consumed	 by	 applications,	 and	 so	 there	 is	 a	 big
opportunity	to	shake	things	up	a	little	bit	there.	Now,	why	am	I	proposing	now	to	do	this
massive	redesign	of	the	consensus	layer?	And	it	basically	boils	down	to	the	fact	that	the
beacon	chain	is	kind	of	old.

The	spec	was	frozen	five	years	ago,	and	in	those	five	years	so	much	has	happened.	 In
particular,	 we	 have	 a	 much	 better	 understanding	 of	 MEV.	 Five	 years	 ago,	 we	 were
extremely	 naive	when	 it	 comes	 to	MEV,	 and	 since	 then	we've	 seen	 the	market	 really
blossom	and	grow.

And	we	also	have	a	much	better	understanding	of	mechanisms	that	can	help	us	mitigate
the	negative	 externalities	 of	MEV.	 Secondly,	 from	an	engineering	 standpoint,	we	have
this	 wonderfully	 powerful	 technology	 called	 Snarks,	 where	 there's	 been	 plenty	 of
breakthroughs.	In	particular,	we've	seen	Snarks	become	orders	of	magnitude	faster	over
the	last	five	years,	and	we've	seen	the	advent	of	ZKVMs.

ZKVMs	are	amazing	technology	that	allows	any	programmer	in	the	world	to	make	use	of



this	 very	 powerful	 technology	 without	 having	 to	 be	 an	 expert	 in	 cryptography	 or	 in
Snarks.	And	then	finally,	with	the	benefit	of	hindsight,	we	now	know	what	the	mistakes
we	 made	 with	 the	 beacon	 chain.	 And	 we	 have	 a	 bunch	 of	 technical	 debt	 which	 is
extremely	sticky	and	tends	to	pile	on	over	time,	and	maybe	now	we	have	an	opportunity
to	clear	this	technical	debt.

So	I'm	suggesting	putting	the	greatest	and	latest	of	the	consensus	layer	roadmap	in	the
beam	chain,	 so	 I	 guess	 it	might	be	worth	 spending	a	 little	bit	 of	 time	 looking	at	what
exactly	is	in	the	consensus	layer	roadmap.	There's	basically	nine	different	items,	and	I've
categorized	 them	 in	 three	 different	 buckets.	 Block	 production,	 staking,	 and
cryptography.

So	the	block	production	has	to	do	with	MEV.	Right	now,	we	have	a	lot	of	centralization	at
the	builder	and	relay	 level,	and	one	of	 the	things	that	we	want	 to	do	 is	have	 inclusion
lists	 that	 dramatically	 improve	 censorship	 resistance.	 Once	 we	 have	 censorship
resistance	with	inclusion	lists,	we'll	be	in	a	position	where	we	can	cleanly	decouple	the
validators	 from	 the	 block	 production	 pipeline,	 and	 this	 is	 called	 a	 tester-proposer
separation,	and	there's	ideas	like	execution	auctions.

And	then	the	final	item	here	in	the	block	production	bucket	is	faster	slots.	Maybe	we	can
take	 the	12-second	slots	 that	we	have	right	now	and	shrink	 them,	all	while	preserving
the	 invariance	 that	 if	you	are	on	a	home	 internet	connection,	you	can	participate	as	a
validator,	as	a	first-class	citizen,	even	if	you	are	in	Australia	with	a	high-latency	internet
connection.	Second	bucket	is	staking.

The	 researchers,	 I	 think,	 have	 come	 to	 consensus,	 broadly	 speaking,	 that	 the	 current
issuance	curve	is	kind	of	broken,	and	that	there	is	an	opportunity	to	improve	the	health
and	 long-term	outcomes	of	Ethereum	by	changing	 it.	The	second	 item	 in	 the	 roadmap
here	under	the	staking	bucket	 is	this	 idea	of	dramatically	reducing	the	total	amount	of
ETH	to	become	a	validator,	from	32	ETH	down	to	just	one	ETH,	and	there	are	ideas	like
Orbit	that	have	been	circulating	around	recently.	And	then	finally,	this	is	an	idea	that	has
been	talked	about	for	many	years,	is	single-slot	finality.

Can	we	dramatically	accelerate	the	process	of	Ethereum	gaining	finality?	And	then	the
final	 bucket	 has	 two	 big-ticket	 items.	 Number	 one,	 can	 we	 snarkify	 the	 whole	 of	 the
consensus	layer	in	real-time	using	reasonable	hardware?	And	then	finally,	can	we	make
the	 cryptography	 that	 is	 securing	 Ethereum	 sustainable	 for	 the	 next	 decades	 and
centuries,	and	make	it	post-quantum	secure?	Now	the	coloring	here	is	meant	to	suggest
whether	or	not	the	item	in	the	roadmap	can	be	done	easily,	incrementally,	or	whether	it
can't.	So	 the	 four	green	 items	here	 in	 the	top	 left	corner	are	 items	that	 I	 think	can	be
done	and	should	be	done	in	incremental	forks	on	the	beacon	chain.

But	then	when	we	get	rid	of	those,	we're	left	with	big-ticket	items,	the	red	items,	that	I
would	 argue	 are	 best	 done	 in	 a	 more	 holistic	 way.	 So	 take	 chain	 snarkification,	 for



example.	 In	 order	 to	 achieve	 real-time	 proving	 of	 the	 beacon	 chain	 with	 reasonable
hardware,	we're	going	to	need	to	change	the	hash	functions.

We're	going	to	need	to	serialize	and	mercolize	the	states.	And	this	is	a	massive	change
to	the	beacon	chain.	And	so	maybe	there's	an	opportunity,	 if	we	were	to	make	such	a
change,	to	change	other	things	at	the	same	time.

And	then	a	similar	thing	can	be	said	for	the	bottom	two	red	boxes,	faster	slots	and	faster
finality.	The	truth	is	that	five	years	ago,	our	mindset	was	security	first	when	we	designed
the	beacon	chain.	And	performance	was	not	really	a	main	consideration.

And	with	the	benefit	of	hindsight,	we	found	that	there	are	designs	that	preserve	all	of	the
security	 that	we	want	and	at	 the	same	time	pick	some	of	 the	 low-hanging	 fruit	 that	 is
available	 to	us	 to	 improve	performance.	Okay.	So	 this	 slide	here	 is	 trying	 to	 show	 the
mapping	 from	 the	 consensus	 layer	 roadmap	 that	 I	 showed	 you	 and	 Vitalik's	 broader
roadmap.

(8:09	-	9:55)

We	 have	 some	 items	 that	 are	 classified	 under	 the	 merge,	 some	 that	 are	 under	 the
scourge,	 and	 then	 a	 couple	 that	 are	 under	 the	 verge	 and	 the	 splurge.	 And	 the	whole
point	of	this	slide	is	to	communicate	the	fact	that	the	beam	chain	is	not	about	changing
the	roadmap	more	so	than	it	is	about	identifying	a	specific	subset	of	that	roadmap	and
accelerating	 it	and	putting	a	mimetic	wrapper	around	 it.	Now,	one	thing	that	 is	new	 in
the	consensus	layer	roadmap	here	is	the	faster	slots.

And	the	reason	is	that	the	discussion	around	faster	slots	has	happened	this	year	in	2024,
but	Vitalik's	roadmap	diagram	was	only	last	updated	in	2023.	Now,	in	addition	to	being
able	to	potentially	accelerate	these	big	ticket	items,	there's	a	lot	of	technical	debt	that	I
mentioned	 that	 can	 be	 cleared	 out.	 If	 we	 have	 single	 slot	 finality,	 we	 no	 longer	 need
epochs.

We	can	just	have	slots.	The	deposit	contract	that	we	have	right	now	is	kind	of	crazy,	and
it's	a	remnant	of	the	merge.	And	things	like	the	sync	committee	is	infrastructure	that	we
won't	need	going	forward	if	we	have	real-time	snarkification	of	the	beacon	chain.

And	the	 list	goes	on	and	on	and	on.	And	this	 is	an	opportunity,	as	 I	mentioned,	to	 just
clean	it	up	all	 in	one	go.	And	if	you're	interested	in	learning	more	about	some	of	these
beacon	 chain	 mistakes,	 last	 year	 I	 did	 a	 whole	 talk	 where	 I	 talked	 about	 20	 or	 so
different	mistakes	that	we	made	in	the	beacon	chain	design.

(9:57	-	17:55)

So	 this	 is	 the	big	picture	 view	of	 how	we	have	done	upgrades	 to	 the	 consensus	 layer
since	Genesys.	 So	 in	 the	 bottom	 left	 here,	 you	 can	 see	we	 did	Genesys	 in	 2020,	 and



since	then,	 it's	been	an	extremely	regular	pattern.	Every	single	year,	we've	had	a	new
fork,	and	every	time	we	had	a	fork,	we	made	one	incremental	change	to	the	consensus
layer.

So	in	2021,	we	added	sync	committees.	In	2022,	we	did	the	merge.	In	2023,	we	added
withdrawals.

And	 then	 proto-dangsharding.	 And	 soon,	 in	 2025,	 we're	 going	 to	 increase	 the	 max
effective	balance.	Now,	what	I	expect	will	happen	is	that	over	the	coming	years,	we	will
continue	doing	these	incremental	forks,	and	we	will	be	picking	up	the	low-hanging	fruit
that	was	marked	as	green	bubbles	 in	 the	 road	map,	 in	 the	 top	 left	 corner	of	 the	 road
map.

But	then	we're	going	to	kind	of	hit	a	wall.	And	the	reason	is	that	once	we've	picked	all	of
the	 low-hanging	 fruit,	we'll	 be	 left	with	 all	 of	 the	 big-ticket	 items	 that	 are	much	more
difficult	to	do	in	an	incremental	fashion.	And	this	is	where	the	beam	fork	happens.

The	beam	fork	is	an	opportunity	to	have	a	quantum	leap	forward	in	terms	of	upgrading
the	 consensus	 layer	 all	 in	 one	 go.	 And	 one	way	 to	 think	 about	 the	 beam	 fork	 is	 as	 a
batching	opportunity.	We're	batching	multiple	upgrades	into	one	single	fork,	and	this	has
benefits	both	technically	and	from	a	governance	standpoint.

And	one	way	to	think	about	this	batching	opportunity	is	as	ossification	accelerationism.
This	might	sound	like	an	oxymoron,	but	the	basic	idea	is	that	we	want	Ethereum	to	go	in
maintenance	mode	as	soon	as	possible.	And	right	now,	there's	this	tension	because	we
know	that	there's	these	big-ticket	items	that	require	a	fundamental	re-architecturing	of
Ethereum,	 and	 the	more	 we	 drag	 it	 along,	 the	 further	 Ethereum	will	 be	 in	 a	 position
where	it	can	comfortably	ossify.

Okay,	part	two.	I'm	going	to	try	and	highlight	some	of	the	technology	that	is	going	into
the	 proposed	 beam	 chain.	 And	 the	way	 that	 I	 would	 frame	 this	 is	 basically	 in	 eras	 of
Ethereum	consensus.

Initially,	we	had	 the	 proof-of-work	 era	 of	 Ethereum	consensus,	 and	 then	we	moved	 to
proof-of-stake.	And	now,	we're	potentially	entering	this	ZK	era	of	Ethereum	consensus.
And	in	the	ZK	era,	we	would	be	making	heavy,	heavy	use	of	snarks	as	a	technology.

So	one	place	where	we'd	be	making	use	of	snarks	is	snarkifying	the	entire	beam	chain,
the	entire	consensus	 layer.	And	this	 is	where	the	ZKVMs	become	extremely,	extremely
handy.	 So	 imagine	 that	 you	have	 implementations	 of	 the	 beam	chain	 in	 various	 high-
level	languages,	in	Rust,	in	Go,	for	example.

What	 you	 can	 do	 is	 compile	 these	 high-level	 languages	 down	 to	 bytecode	 that	 the
ZKVMs	will	understand,	and	get	snarkification	without	having	to	worry	about	the	details
of	the	snarkification	process.	Now,	one	thing	that	I	do	want	to	highlight	is	that	the	only



part	 that	 needs	 to	be	 snarkified	 is	what's	 called	 the	 state	 transition	 function,	which	 is
basically	 the	 crystalline	 core	 of	 what	 it	 means	 to	 be	 a	 consensus	 client.	 All	 of	 the
infrastructure	surrounding	 the	state	 transition	 function,	 for	example,	 the	networking	or
the	syncing	or	the	caching	optimizations	or	the	fork	choice	rule,	none	of	that	has	to	be
snarkified.

And	ultimately,	the	state	transition	function	is	a	small	subset	of	what	it	takes	to	build	a
client.	And	what	we've	seen	recently	 in	 the	 last	couple	years	 is	RISC-V	become	the	de
facto	 industry	standard	 for	 these	ZKVMs.	So	RISC-V	 is	an	 instruction	set,	and	basically
you	can	take	high-level	code	and	compile	it	down	to	RISC-V.

And	we've	seen	seven	different	companies	provide	these	RISC-V	ZKVMs.	You	may	have
heard	of	RISC-0	and	SP1,	and	the	list	goes	on	and	on.	Now,	one	little	side	note	here	 is
that	 this	 exact	 technology,	 which	 is	 extremely	 powerful,	 can	 also	 be	 used	 at	 the
execution	layer	for	the	EVM.

But	 that	 is	 a	 completely	 different	 story	 to	 the	 beam	 chain	 story.	 It's	 one	 which	 is
extremely	exciting	because	it	means	that	we	can	dramatically	increase	the	gas	limit,	as
well	as	vertically	scale	if	you're	in	layer	one.	But	this	is	going	to	have	to	be	for	a	different
talk.

The	 other	 place	 where	 we	 make	 heavy	 use	 of	 snarks	 in	 the	 beam	 chain	 is	 with
aggregatable	signatures.	We	want	 to	have	post-quantum	aggregatable	signatures,	and
the	proposal	here	is	to	use	hash	functions.	Hash	functions	are	post-quantum	secure,	and
you	can	use	that	as	a	basic	building	block	to	build	your	cryptography.

So	we	would	 have	 hash-based	 signatures	 that	 are	 produced	 by	 the	 validators,	 by	 the
attesters,	and	we	would	also	have	hash-based	snarks	where	you	can	take	many,	many
thousands	of	signatures	and	compress	them	down	to	just	one	proof.	And	with	these	two
combined,	you	get	a	hash-based	post-quantum	aggregatable	scheme	that	could	be	used
for	 Ethereum.	 And	 one	 little	 nice	 detail	 is	 that	 this	 aggregatable	 scheme	 is	 infinitely
recursively	 aggregatable,	 so	 you	 can	 take	 aggregates	 of	 aggregates	 of	 aggregates,
which	is	something	that	we	can't	really	do	today	with	BLS.

So	 it's	 much	 more	 flexible.	 And	 the	 reason	 why	 I	 have	 this	 proposal	 here	 today	 is
because	 in	 the	 last	 few	 months,	 the	 progress	 in	 performance	 of	 snarkifying	 hash
functions	has	gone	through	the	absolute	roof.	So	 for	 those	who	are	 in	the	know,	we're
now	able	 to	 prove	 on	 a	 laptop,	 so	 this	 benchmark	 here	was	 done	 on	 a	 laptop	CPU,	 a
MacBook	 Pro,	 we're	 now	 able	 to	 prove	 two	 million	 hashes	 per	 second,	 which	 is	 an
astounding	amount	of	hashes	per	second.

And	 this	 means	 that	 this	 hash-based	 proposal	 has	 the	 potential	 of	 being	 extremely
performant	for	the	beam	chain.	Now,	in	addition	to	the	very	powerful	ZKVMs	and	snarks
that	we	would	be	using,	I	also	want	to	highlight	that	to	a	large	extent	we	would	also	be



reusing	 existing	 infrastructure.	 So	 the	 networking	 libraries,	 libp2p,	 the	 serialization
libraries,	simple	serialize,	all	of	that	can	be	reused	as	is	today.

Same	 thing	 for	 the	 PySpec.	 PySpec	 is	 the	 framework	 that	 we	 use	 to	write	 the	 formal
specification,	sorry,	the	Python	specification,	and	the	unit	tests,	and	we	can	also	reuse
protocol	guilds,	all	of	which	is	infrastructure	that	didn't	really	exist	when	we	started	with
the	beacon	chain.	And	the	same	thing	can	be	said	about	teams.

When	we	 started	 the	 process	 of	 the	 beacon	 chain,	 there	 was	 no	 team,	 there	 was	 no
consensus	client	teams.	So	the	five	consensus	client	teams	that	we	have	today,	this	 is
manpower	that	can	be	reused	and	doesn't	have	to	be	rebuilt.	And	in	addition	to	that,	we
have	dedicated	teams	that	were	put	in	place	for	the	merge,	for	example,	EVE	Panda	Ops,
which	does	DevOps,	and	the	security	team	within	the	EVE	Foundation.

(17:56	-	20:49)

And	I	also	want	to	give	a	shout	out	to	the	incentives	team	and	to	the	applied	research
group,	which	are	also	 teams	that	all	of	 this	 infrastructure	didn't	exist,	and	we	can	 just
reuse	 it	 for	 free.	Okay,	 final	part.	So	here	 I	want	to	 try	and	highlight	some	of	 the	next
steps	and	how	I	see	the	future.

So	one	possible	outcome	here	is	that,	starting	from	2025,	we	start	the	specing	process.
So	 this	would	 be	 something	 that	 a	 small	 group	of	 researchers	would	 do,	 and	 it	would
take	maybe	 a	whole	 year.	 And	 then	 in	 2026,	 the	 building	 process	 can	 happen	where
clients	would	start	writing	production-grade	code,	and	then	in	2026,	EVE	7	would	start	an
extremely	 thorough	 testing	process	 to	make	 sure	 that	 this	 is	 all	 production-grade	and
safe	to	deploy	on	mainnet.

Now,	the	next	step	for	me	as	a	researcher	would	be	to	start	writing	the	executable	spec,
which	I	call	the	executable	roadmap.	And	the	idea	is	to	take	the	pixels	that	we	have	of
the	roadmap	combined	with	the	hundreds	of	thousands	of	words	that	have	been	written
on	the	EVE	research	and	 in	academic	papers,	as	well	as	all	of	 the	 ideas	that	 lie	 in	 the
minds	of	researchers,	combine	all	of	this,	and	extract	the	core	essence,	which	would	be
this	executable	spec.	And	ultimately,	it	would	be	a	very	small	document,	roughly	1,000
lines	of	Python	code.

Now,	one	exciting	thing	for	me	here	is	that	the	BeamChain,	assuming	that	there	is	rough
consensus	 to	 go	 in	 this	 new	direction,	would	 be	 a	 fantastic	 onboarding	 opportunity	 to
bring	fresh	blood	into	the	space,	especially	for	the	consensus	clients.	So	today,	we	have
consensus	clients	 in	North	America,	 in	Europe,	 in	Oceania,	and	 I'm	very	pleased	 to	be
able	 to	 announce	 today	 that	 we	 have	 already	 new	 consensus	 client	 teams	 that	 are
willing	to	build	the	Beam	clients.	So	we	have	one	which	is	based	in	India,	which	is	called
the	Zim	Team.



This	 is	a	Beam	client	written	in	Zig.	And	then	we	have	Lambda	Class	 in	South	America
that	 has	 signaled	 an	 interest	 to	 also	 write	 a	 Beam	 client.	 And	 so	 if	 you	 will	 also	 get
involved,	and	we're	going	to	need	a	lot	of	excellent	talent,	we're	going	to	need	speckers
and	 networking	 experts	 and	 coordinators	 and	 cryptographic	 experts	 and	 client	 devs,
please	reach	out	at	this	email	address	and	Beam	up	with	us	on	this	new	adventure.

(20:49	-	21:38)

Thank	 you	 so	 much.	 All	 right,	 let's	 hear	 it	 one	 more	 time.	 Come	 on,	 a	 big	 round	 of
applause.

That	was	a	fantastic	presentation.	Really,	really	good.	Really	appreciate	it.

And	I'm	sure	the	audience	appreciated	it	as	well.	Now	is	the	time	to	ask	your	questions,
or	if	you	see	an	interesting	question,	please	upvote	it.	Now,	for	those	of	you	in	the	hall,
don't	leave	yet,	okay?	Just	give	us	some	time	because	the	volunteers	need	to	clear	a	bit
of	the	space.

There	are	still	a	lot	of	people	outside,	so	at	the	end	of	Q&A,	don't	move.	Stay	where	you
are	because	our	volunteers	need	time	to	clear	 the	hall	 later,	okay?	So	 just	stay	where
you	 are,	 and	 I'll	 instruct	 you	 at	 the	 end	 of	Q&A.	 All	 right,	 Justin,	 let's	 look	 at	 the	 first
question	with	the	five	votes	right	on	top.

(21:38	-	24:09)

Deploying	many	changes	at	once	is	risky	in	that	if	any	one	change	gets	delayed	or	has	a
bug,	they	all	get	stuck	or	rolled	back.	How	hard	have	you	tried	to	break	them	down	in
incremental	batches?	Okay,	great	question.	So	there's	many	things	that	I've	tried	to	do
to	try	and	de-risk	the	bean	chain.

The	first	one	is	to	encourage	all	of	the	incremental	upgrades,	remember	the	four	green
items	 in	 the	 roadmap,	 that	 could	 be	 done	 ahead	 of	 time.	 And	 by	 going	 through	 the
process	of	the	incremental	upgrades,	we're	going	to	go	through	a	lot	of	the	lessons	and
a	lot	of	the	hard	work,	and	discover	the	challenges	there	and	then.	The	other	thing	that
I'll	mention	 is	 that	 the	bean	chain	 is	 really	only	about	changing	 the	core	of	 the	client,
which	is	the	state	transition	function.

And	a	 lot	 of	 the	potential	 opportunity	 for	 bugs,	whether	 it's	 a	 networking	 layer	 or	 the
localization	 libraries,	or	 the	 fork	choice	 rule,	a	 lot	of	 that	 infrastructure	can,	 to	a	 large
extent,	be	reused.	Another	thing	that	I	want	to	do	to	de-risk	the	bean	chain	is	make	sure
that	all	of	 the	existing	clients	are	on	board,	because	ultimately	 these	are	50	men	and
women	that	have	many,	many	years	of	experience	building	consensus	clients,	and	they
know	what	a	lot	of	these	pitfalls	are.	And	then	another	thing	that	I	would	say	in	terms	of
de-risking	 the	 bean	 chain	 is	 that	 we	 will	 have	 an	 especially	 intensive	 testing	 period,
which	could	last,	for	example,	a	couple	of	years.



This	 is	what	 I	had	 in	the	Strawman	timeline.	And	during	that	time,	we	would	do	many,
many	 rehearsals	 on	 death	 nets	 and	 test	 nets	 so	 that	 we	 could	 grow	 confidence	 that
there	isn't	a	bug	in	this	big	upgrade.	Excellent.

Thank	 you	 for	 the	 answer,	 indeed.	 Testing	 is	 very	 essential	 when	 it	 comes	 to	 the
blockchain	and	updates.	Now,	the	question	that	I've	seen	has	gotten	the	most	votes	of
any	of	the	rooms	so	far.

20	is	the	number	to	beat.	Are	you	OK,	Justin,	with	people	calling	this	Ethereum	3.0,	the
meme	 layer	 of	 Ethereum,	wants	 to	do	 this?	OK,	great	question.	 So	 in	my	opinion,	 the
moniker	Ethereum	3.0	is	not	appropriate.

And	the	reason	is	that	the	bean	chain	is	only	about	the	consensus	layer.	It's	not	about	all
of	Ethereum	layer	one.	It's	just	a	consensus	layer.

It	excludes	the	data	layer,	Dankshadeng,	and	it	also	excludes	the	EVM.	And	there's	lots
of	exciting	stuff	happening	at	these	layers	of	the	stack	as	well.	So	this	is	why	I've	tried	to
avoid	the	Ethereum	3.0	moniker.

(24:09	-	25:21)

All	 right.	 I	mean,	 it's	a	 fair,	 fair,	 fair	answer	as	well.	But	people	will	do	what	people	do
best	and	they'll	call	it	Ethereum	3.0.	And	we'll	get	a	few	new	coins	and	people	ask	all	the
exchanges,	will	my	Ethereum	change	and	all	of	that.

But	let's	go	to	the	next	highest	voted	question.	Which	ZKVM	will	be	used	for	beam	chain
as	there's	no	standardization	of	ZKVMs?	Okay,	fantastic	question.	So	the	amazing	thing
about	 the	 proposed	 design,	 and	 actually	 this	 is	 an	 idea	 from	 Vitalik,	 is	 that	 the
snarkification	would	happen	off-chain	and	would	not	be	enshrined	in	consensus.

So	what	 that	means	 is	 that	 every	 independent	 validator	 can	 choose	which	ZKVM	 they
prefer.	So	they	can	use	any	of	the	seven	RISC-V	ZKVMs,	but	they	can	also	use	non-RISC-
V	ZKVMs.	And	ultimately,	by	having	this	off-chain	snarkification,	it	means	that	if	there's	a
bug	in	one	of	them,	it's	very	easy	to	fix.

If	 there	 is	a	performance	optimization	 in	one	of	 them,	you	 just	update	your	client	and
you	 get	 this	 performance	 optimization.	 And	 also,	 it	means	 that	we	 don't	 have	 to	 pick
winners	 and	we	don't	 have	 to	 add	a	 lot	 of	 complexity	 on-chain.	 All	 of	 this	 is	 off-chain
complexity	at	the	social	layer.

(25:22	-	25:45)

All	right,	thank	you.	We	got	30	seconds.	You	want	to	take	the	last	question	at	the	top?
Any	way	to	accelerate	that	timeline?	We	moved.

Okay.	Okay,	well,	let's	take	the	first	one.	Okay,	they	voted	for	18,	19.



Okay,	let's	do	that	one.	Why	are	ETH	researchers	obsessed	with	lowering	issuance?	It's...
Come	on,	guys.	We	need	the	DAO	to	agree.

(25:46	-	25:53)

Where	 is	 the	 consensus?	 Okay,	 Justin,	 take	 whichever	 question	 you	 want.	 Okay,	 I'm
happy	to	answer	all	of	the	questions	later	on.


